
Lean Development

When you have
only one chance to
get it right Mary Poppendieck

mary@poppendieck.com
www.leantoolkit.com

March, 2003 Copyrignt©2003 Poppendieck.LLC 2

The Toyota
Production
System

® Approach to Production
® Build only what is needed
® Stop if something goes wrong
® Eliminate anything which does not add value

® Philosophy of Work
® Respect for Workers
® Full utilization of workers’ capabilities
® Entrust workers with responsibility & authority

Taiichi Ohno

(1912-1990)

March, 2003 Copyrignt©2003 Poppendieck.LLC 3

Concurrent Development
® 1981 – GM Starts the G-10 Project

® 1988 – Buick Regal
® 1989 – Olds Cutlass & Pontiac Grand Prix

® 1986 – Honda Starts the New Accord Project
® 1989 – Introduced as 1990 model
® 1990’s – Largest-selling model in North America

® 2 Years Late

The Machine That Changed The World, Womack, 1990

46%903485Staff

1 in 2

60.4

3.1

US

66%1 in 6Delayed Products

24%46.2Months

45%1.7Hours (millions)

AdvantageJapanLate 80’s

Product Development Performance, Clark, 1991

March, 2003 Copyrignt©2003 Poppendieck.LLC 4

Concurrent Development

→ Vehicle concept

→ Vehicle sketches

→ Clay models

→ Design structure plans

→ First prototype

→ Second prototype

→ Production trials

→ Release to production

Gradually
Narrow

Tolerances

M
ile

st
on

es

March, 2003 Copyrignt©2003 Poppendieck.LLC 5

Principles of
Lean Thinking

1.1. Eliminate Waste
2. Amplify Learning

3.3. Decide as Late As Possible

4.4. Deliver as Fast as Possible

5.5. Empower the Team

6.6. Build Integrity In

7.7. See the Whole

March, 2003 Copyrignt©2003 Poppendieck.LLC 6

2. Amplify Learning
® Waterfall

Doesn’t
Work!

® Iterative Incremental
Development

Works!

* Craig Larman, “A History of Iterative and Incremental Development”, IEEE Computer, June 2003

In the history of
science…simplistic but
inferior ideas first hold the
dominant position, even in the
absence of results. Medicine’s
“four humors” [come to mind].*

IID concepts have been and
are recommended practice by
leading software engineering
thoughtleaders..., associated
with many successful large
projects and recommended by
standards boards.*

March, 2003 Copyrignt©2003 Poppendieck.LLC 7

Iterative Development History
® 1950’s X-15 Hypersonic Jet (NASA)

® Success attributed to incremental development
® 1960’s Project Mercury (NASA)

® Very short, structured timeboxed iterations, Test First design
® 1972 USA Trident submarine control system (IBM FSD)

® “Integration Engineering” was key to managing complexity
® Project ‘could not be late’; used 6 month timeboxed iterations

® Mid 1970’s USA Navy helicopter-ship system LAMPS (IBM FSD)
® 45 - 1 month timeboxed iterations
® Every delivery was on time and under budget

® 1987 Defense Science Board Task Force
® “Document-driven, specify-then-build approach lies at the heart of so many DoD

software problems….Evolutionary development is best technically, and it saves
time and money.”

® 1993 William J Spuck, JPL Internal Paper “Rapid Development Method”
® Describes Evolutionary Development as “a series of incremental deliveries. Each

delivery contributes an operable, functionally viable, partial system. The overall
system is developed and delivered to its users in small evolutionarily increments.
The users employ the evolving system in the daily conduct of their mission.”

® 1994 Defense Science Board Task Force
® “DoD must manage programs using iterative development.”

Craig Larman, “A History of Iterative and Incremental Development”, IEEE Computer, June 2003

March, 2003 Copyrignt©2003 Poppendieck.LLC 8

for Troubled Projects

® Increase Feedback
®Don’t Toss Stuff Over-the-Wall

® Increase Learning
®Use Rapid try-it-test-it-fix-it cycles

® Increase Communication
®Develop Hardware & Software Together

March, 2003 Copyrignt©2003 Poppendieck.LLC 9

1. Eliminate Waste

March, 2003 Copyrignt©2003 Poppendieck.LLC 10

Seeing Waste

DefectsDefects

MotionMotion

WaitingWaiting

Task SwitchingTransportation

Extra FeaturesOverproduction

PaperworkExtra Processing

Partially Done WorkInventory

Seven Wastes of
Development

Seven Wastes of
Manufacturing*

* Shigeo Shingo, an engineer at Toyota and a noted authority on just-in-time techniques.

March, 2003 Copyrignt©2003 Poppendieck.LLC 11

3. Decide as Late as Possible

Die Change is Expensive

Conventional Wisdom
Don’t Change Dies

Taiichi Ohno
Economics Requires Many
Dies Per Stamping Machine

One Minute Die Change

Mistakes are Expensive
Changes Never End

Conventional Wisdom
Wait to design – Wait to cut

Toyota
Early Design – Early Cut
Half the Time – Half the Cost

Manufacturing Stamping Dies Product Development

March, 2003 Copyrignt©2003 Poppendieck.LLC 12

® Share partially complete design information.
® Develop a sense of when to make decisions.
® Develop a sense of how to absorb changes.
® Develop a quick response capability.
® Avoid extra features.

Delay Commitment

Make Decisions at the Last Responsible Moment
The moment when failing to make a decision

eliminates an important alternative

March, 2003 Copyrignt©2003 Poppendieck.LLC 13

Point-Based vs. Set-Based

Point Based Design
Set up a meeting using
the point-based model.

Set Based Design
Now set up the meeting by
communicating about sets.

A: Uh, already booked.
Can you meet at 3:00?

A: I can meet
10:00 - 1:00 or
3:00 - 5:00.
Can you make any
of these times?

B: Let’s meet
12:00 - 1:00.

based on dissertation by Durward K. Sobek, II, 1997

A: My best time
is 10:00. Can you
make it?

B: No, I can’t.
How about 2:00?

B: No, 3:00
is bad. 9:00?

?

You already understand this!

March, 2003 Copyrignt©2003 Poppendieck.LLC 14

set-based development
Develop Multiple Options

[Yes, It’s really cheaper!]

Look for Intersections
[Stick With Decisions]

Option 1 Option 3

Option 2

Option 1
Option 2

Option 3

Accep
table

Communicate Constraints
[Not Solutions]

Narrow Options Gradually
[The Solution Emerges]

March, 2003 Copyrignt©2003 Poppendieck.LLC 15

4. Deliver as Fast as Possible

The Measure of Maturity

March, 2003 Copyrignt©2003 Poppendieck.LLC 16

Fast Self-Directing Work

® Story Cards or Iteration Feature List
® How do developers know what to do?

® Information Radiators
® White Boards
® Charts on the Wall

® Daily Meetings
® Status
® Commitment
® Need

Story YY
Login New User
Get Password
Afal;jdsa;fuwe

Story XX
Login New User
Afal;jdsa;fuwe

Story XX
Login New User
Afal;jdsa;fuwe

Story XX
Login New User
Afal;jdsa;fuwe Story XX

Login New User
Afal;jdsa;fuwe

Story XX
Login New User
Afal;jdsa;fuwe

Story YY
Login New User
Get Password
Afal;jdsa;fuwe

Story YY
Login New User
Get Password
Afal;jdsa;fuwe

Story YY
Login New User
Get Password
Afal;jdsa;fuwe

Story YY
Login New User
Get Password
Afal;jdsa;fuwe

Story YY
Login New User
Get Password
Afal;jdsa;fuwe

Story XX
Login New User
Afal;jdsa;fuwe

Tests
PassedChecked Out To Do

Software Kanban

⇒implies

March, 2003 Copyrignt©2003 Poppendieck.LLC 17

5. Empower the Team
® 1982 – GM Closed the Fremont, CA Plant

® Lowest Productivity
® Highest Absenteeism

® 1983 – Reopened as NUMMI (Toyota & GM)
® Same work force
® White-collar jobs switch from directing to support
® Small work teams trained to design, measure,

standardize and optimize their own work

® 1985
® Productivity & quality doubled,

exceeded all other GM plants
® Drug and alcohol abuse disappeared
® Absenteeism virtually stopped
® Time to expand the plant

March, 2003 Copyrignt©2003 Poppendieck.LLC 18

Decide as Low as Possible

®Who Designs Your Processes?

Do They Believe They
Make The Decisions?

Resources

Inform
atio

n

Training

Organizational Energy

Process Design Authority

Decision Making Authority

March, 2003 Copyrignt©2003 Poppendieck.LLC 19

6. Build Integrity In

®Perceived Integrity
The totality of the system achieves a
balance of function, usability, reliability and
economy that delights customers.

®Conceptual Integrity

The system's central concepts work
together as a smooth, cohesive whole.

Clark & Fujimoto, Product Development Performance, Harvard Business School Press, 1991

March, 2003 Copyrignt©2003 Poppendieck.LLC 20

Keys to Product Integrity

March, 2003 Copyrignt©2003 Poppendieck.LLC 21

Refactoring
1. Simplicity

® The goal of most
patterns

2. Clarity
® Common language
® Encapsulation
® Self-documenting code

3. Suitable for Use
® Usability
® Performance

4. No Repetition
® NO REPITITION!

5. No Extra Features
® No Code Before its

Time
® No Code After its Time

Continuous Improve-
ment of the Design

Without Refactoring

With Refactoring

March, 2003 Copyrignt©2003 Poppendieck.LLC 22

Aggressive, Automated Testing

Feedback Requirements

Scaffolding As-Built

CodeComparison

Current
System

Capability

System
Under
Test

Current
Design
Intent

Developer

Current
Business

Needs
Customer

March, 2003 Copyrignt©2003 Poppendieck.LLC 23

7. See the Whole
Sub-Optimizing What Matters

You get what you measure

Measure what matters

1
2

3
4

5

Initial

Repeatable

Defined

Managed

Optimizing

March, 2003 Copyrignt©2003 Poppendieck.LLC 24

Certification Improvement

® Zeos / Micron
® PC Maker that went public in 1990
® Finalist for Malcolm Baldrige Award
® 1995 Merged into Micron Electronics
® Stuck to their intense focus on build-

to-forecast processes… a fatal error.

® Dell
® Focus on high value customers
® View inventory as the greatest risk
® Strong partnerships with suppliers

≠

Best in the World

PassionEconomics

Jim Collins, Good to Great, Harper Business, 2001

Thank You!

Mary Poppendieck
mary@poppendieck.com
www.leantoolkit.com

March, 2003 Copyrignt©2003 Poppendieck.LLC 26

Bibliography – Lean Thinking
Austin, Robert D. Measuring and Managing Performance in Organizations. Dorset House, 1996.

Christensen, Clayton M. The Innovator’s Dilemma. Harvard Business School Press, 2000.

Clark, Kim B., & Takahiro Fujimoto. Product Development Performance: Strategy, Organization, and
Management in the World Auto Industry. Harvard Business School Press, 1991.

Collins, Jim. Good to Great: Why Some Companies Make the Leap…and Others Don’t. HarperBusiness, 2001.

Dyer, Jeffrey H. Collaborative Advantage: Winning Through Extended Enterprise Supplier Networks. Oxford
University Press; 2000.

Freedman, David H. Corps Business. HarperBusiness, 2000.

Goldratt, Eliyahu M. The Goal: A Process of Ongoing Improvement, 2nd rev. ed. North River Press, 1992.

Klein, Gary. Sources of Power: How People Make Decisions. MIT Press, 1999.

O’Reilly, Charles A., III, & Jeffrey Pfeffer. Hidden Value: How Great Companies Achieve Extraordinary Results
with Ordinary People. Harvard Business School Press, 2000.

Ohno, Taiichi. The Toyota Production System: Beyond Large-Scale Production. Productivity Press, 1988.

Reinertsen, Donald G. Managing the Design Factory: A Product Developer’s Toolkit. Free Press, 1997.

Smith, Preston G., & Donald G. Reinertsen. Developing Products in Half the Time: New Rules, New Tools, 2nd
ed. John Wiley & Sons, 1998.

Ward, Allen, Jeffrey K. Liker, John J. Cristaino, & Durward K. Sobek, II. “The Second Toyota Paradox: How
Delaying Decisions Can Make Better Cars Faster.” Sloan Management Review 36(3): Spring 1995, 43–61.

Womack, James P., & Daniel T. Jones. Lean Thinking, Banish Waste and Create Wealth in your Corporation.
Simon and Schuster, 1996.

Womack, James P., Daniel T. Jones, & Daniel Roos. The Machine That Changed the World: The Story of Lean
Production. HarperPerennial, 1991.

March, 2003 Copyrignt©2003 Poppendieck.LLC 27

Bibliography – Software Development
Beck, Kent, & Martin Fowler. Planning Extreme Programming. Addison-Wesley, 2001.

Beck, Kent. Extreme Programming Explained: Embrace Change. Addison-Wesley, 1999.

Cockburn, Alistair. Agile Software Development. Addison-Wesley, 2002.

Cockburn, Alistair. Writing Effective Use Cases. Addison-Wesley, 2000.

Constantine, Larry, & Lucy Lockwood. Software for Use: A Practical Guide to the Models and Methods of
Usage-Centered Design. Addison-Wesley, 1999.

Cusumano, Michael A., & Richard W. Selby. Microsoft Secrets: How the World’s Most Powerful Software
Company Creates Technology, Shapes Markets, and Manages People. Simon & Schuster, 1998.

Evans, Eric. Domain Driven Design. In press, 2003.

Highsmith, Jim. Agile Software Development Ecosystems. Addison-Wesley, 2002.

Highsmith, James A. Adaptive Software Development: A Collaborative Approach to Managing Complex Systems.
Dorset House, 2000.

Hohmann, Luke. Beyond Software Architecture: Creating and Sustaining Winning Solutions. In press, 2003.

Hunt, Andrew, & David Thomas. The Pragmatic Programmer: From Journeyman to Master. Addison-Wesley,
2000.

Jeffries, Ron, Ann Anderson, & Chet Hendrickson. Extreme Programming Installed. Addison-Wesley, 2001.

Johnson, Jeff. GUI Bloopers: Don’ts and Do’s for Software Developers and Web Designers. Morgan Kaufmann
Publishers, 2000.

Poppendieck, Mary & Tom Poppendieck. Lean Software Development: An Agile Toolkit. Addison-Wesley, 2003.

Schwaber, Ken, & Mike Beedle. Agile Software Development with Scrum. Prentice Hall, 2001.

Thimbleby, Harold. “Delaying Commitment.” IEEE Software 5(3): May 1988.

